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Summary

A species sepaiiah grid wastested fora squid trawl to reduce finfighycatch in theNantucket
Soundlongfin inshore squidDoryteuthis pealejifisheryin southern New England, USAhe
experimentatrawl with a gridsignificantly reducebycatch ofsummer flounde(Paralichthys
dentatu$ (76 4%, p < 0.001), black sea bag&entropristis striata (71.7%, p = 0.00), smooth
dogfish(Mustelus canis(86.0% p < 0.00J), and total bycatch (69.2% < 0.001) when
conpared to a conventional trawllhe catch rate ddcup(Stenotomus chrysopis 40.2% Ess
thanin.the experimentatrawl, but this differenceés not statistically significanp(= 0.259.
However, the experimental trawl also redsizggetedsquidcapture by 47% (p < 0.001)
which is'commerciallyinacceptabld.ength analysisndicatesno size effecion the retention
for squidbetween thérawl with a grid éxperimental) and the one without a gradrtrol), but
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the experimentatawl significantly reducselarge scup(> 27 cm FL)andlargerblack sea bass

(> 37 cm TL), and alsummer floundesize-classes. Thereforéhis griddesignmay not bea
suitablebycatch reduction device for the Nantucket Sosqudd trawl fishery, and further work

is needed to understasduidbehaviorwithin a trawl to develop a successful bycatch reduction

strategy for the New Englandngfininshoresquid fishery.

| Atr oduction

Thelongfin inshore quid (Doryteuthis pealejihereafter ‘squid’is widely distributed
inthewestern Atlantic Ocean froMenezuela to Newfoundland (Cohen, 1976; Daive
al.,,"1990). In the northwest Atlantic, squade concentrated between Cape Hatteras and
Georges Bank, where they are harvested commercially (laamy8issenwine, 1983;
Hatfield andCadrin 2002). During autumn and winter months, they found offshore
in.deeper waters (30 m) and are pursued by larger otter trawl vesse2? (/) During
spring‘and summer, squndigrateinshore to spawn iwarmshallowwatess, and are
fished'by smaller vesseldth otter trawls and weiren Nantucket Sound and southern
New.England (SerchukndRathjen 1974; Hatfield anc€Cadrin 2002).

Squid co-occur with many ffish species in the eastern US#fatare often
captured as bycatch by the small meslwl codends (76 mm or less) used in the
fishery, including butterfishReprilus triacanthul scup Stenotomus chrysops
summer flounderKaralichthys dentatysblack sea bas€éntropristis striaty, and
smooth: dogfishNlustelus canis(Bayseand He, in pregsButterfishhad nadirected
fishery-prior to 2014ndhadalimited market(Hendrickson, 2011). @sequently, any
butterfishcatchwas simplydiscarded Scup has hasimall(e.g. 363 kg) petrip landing
guotas NEFSC 2010).Because apare commonly found in large schools, Hoeip
trip quotacanpotentially beexcee@dwith a single towagain resulting invasteful
discards (PoandCarr, 2000; Bayset al, 2014).Bycatch ofbutterfish scup and other
fish species has led to a varietytrawl gear modificatiotests each having partial
success, but all losing too masguidfor commercial applicationgslass et a.1999
PolandCarr, 2000; Glass et al., 200Rpl et al, 2002; Hendrickson, 2005).
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One particulabycatch reductiodevice BRD), the Nordmgre grid, has been
introducedsuccessfullynto many smalimesh shrimp fisheries worldwide (Isakssn
al., 1992 Fonseca et al2005 Silva et al., 2011), and has been mandated in the nearby
Gulf of Maine Northern shrim@Pandalus borealisfishery where it has successfully
separated finfish from Northern shrimp (Richaadsl Hendrickson, 2006; He and
Balzano, 2007, 2011, 2012a, 2012b, 20T8e Nordmgre grid separates species both
mechanically (by size) and via behaviaddferernces (e.g. length and species related

swimming capacity) (He, 199Fonseca et al2005 He and Balzano, 2011).

In the New England squid fishersgveralgrid-like BRDswithin the trawl
extensionwerealsotested(Pol et al, 2002). e ‘vee excluder(a 63.5 mm mesh panel
with.two lateral fisheye separators) and a ring excluder-(dpedseparator made up of
59.9.mm rings with two lateral fish eye separators) successfully retirgedsized
seup but were inconclusive @ufferedunacceptable levelofsquid loss. A large 360
opening (connected by ropes) isquidtrawl between the extension and codend
significantlyreduced largsized scugut did notsignificantly reducesquidor
butterfishcatch(L. Skrobe, perscomm).

We theorize that enodified Nordmgre grid within a squid trawl extensiam c
allow commercially acceptable squid catch diiees while reducing bycatclBased on
previous success of the Nordmgre gaducing fish capture while maintaining the
catchrof smaller, slower swimming target species, and due to prior experiences in
byeateh reduction for the squid fishery, we hypothesize that a squid trawl with a
modified Nordmgre grid would reduce the capture of unwanteddishch as scup,

while retaining enough squid to maintairviable commercial fishery.

M aterials and methods
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Trawl design

A balloonstyle trawl net was modified to incorporate the experimental chgRrges).

The headline length is 21.5 m, and both the groundgear and fishing line measure 25.6
m. - Thegroundgear is a modkfd ‘drop-chain’ design (Nguyeet al.,2015 Bayseet al,
2016a), where chaironnecting thdishing line and groundgear allow the fishiinge

to ‘rise’ off the seabed andway from the groundgeddrop-chainsare 30.5 cm long at

the center section of the groundgear, and 20.3 cm at the wingends to allow for the
appropriate tapering of the trawl mouth. The groundgear consists of 30.5 cm rollers and
7.60.em rubber discs, and ha$0 cm distance between adjaaetiers. Onedrop-chan

is installed at the middle of two adjacent rollers along the entire length of the
greundgear; thus the distance between two nearest drop chains is alscA8@hem.
centerof the groundgear, the fishing line is 49.6 cm above the seabed, and 39.4 cm at
the wingendsBoth control and experimental hauls use the same trawl from the
extension forward. The extensidggingwas alternated between the experimental
design andhe standard extensig¢see below)Both codendsra identicalin design, and
constructed 063.5 mm polyethylene single twine diamond mesh (inside kwitt) a

127 mm polyethylene double twine diamond mesh codend strengthener.

Trawl extension and grid design

The.experimental trawl extension and separator grid designdssceibed in Bayset

al. (2014) (Fig 2). External dimensions of the grid are 1465 mm x 935 mm with inner
spacings of 60 x 241 mm (Fig. 3). The gsdset within the trawl extension at°50
upward from horizontal with the top of the grid leaning toward the codend, and four
27.9 cm floats @ used to compengafor the weight of the grid. A grid with horizontal
barssawas chosen to prevent passage of scup and butterfish, both of whichdraihe la
compressed body types. PVC tubes (20 externaldiameter)cover the grid bars to
provide a rdling effect duringfishing to facilitate squid capture. The extension includes
a guiding funnel (forward end 192 meshes round, 82 meshes from center-forward to

centeraft, and 24neshes semicircle aft end), whigtminate six meshes from the
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base of the grid, and the escape window is triangularly shaped with an aft b&mof 0.
and an apex forward 2.4 ®A.small section of chaffing ge&s wsed at the bottom of the
grid. For control tows, a conventional extension (no grid, funnel, or escape window) of

equal length and mesh sizeused.

Seatrials

Sea trials were carried out in Nantucket Sound, Massachusetts, USA aboard the F/V
Atlantic Prince a 21 m, 272.2 kW (365 hp) commercial trawl vessel, betwed&fal5

and 4 June 2011IMean door and wing spread were measured with the TrawlMaster
system,(Notus Electronics Ltd., St. John’s, NL, Canada). The experimental and control
extension and codend were detached and attached using a rope laced through plastic
rings at the forward section of the extension for easy switchdwers werealternated
between the experimental and control configuration®iABBA and BAAB format (A
=/control; B = experimental), alternatimdhich tow was used firgtaily. All tows were
during.daylight hours, and tow durations were standardized to onefheuieo was
taken“at the trawl extension, grid, and escape window for fish and squid behavior for
towsprior to comparative fishindgetails of camera placement and squid behavior were
described in Bayse et §2014a).

Data collection and analysis

Catchesn the codendsvere sorted by species and weighed to the nearest 0.1 kg using a
Marel 1100 motion compensated scale; catches in front of the grid were noted but not
qguantified. Squidvere measured by mantle length and fish were measured by total
lengthror fork lengttfcm), where appropriat&/hen large numbsiof a species were
caught, asubsample db0-70 individualsvastakenfor length analysisSea grass, other
marine macrophytes, marine litter, rocks, and some other catch components were

grouped together as ‘benthosiulis’.

This article is protected by copyright. All rights reserved



140
141
142
143
144
145
146
147
148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

Catches between trawfier majar speciesvereanalyzedwith linear mixed
models Bayseet al, 2016b).Catch weights (kg) were standardized to per ha trawled by
the area swept of the footrope (average wing sprehe distance trawlgdCatch data
were log transformed so thdifferences between trawls would be modeles
multiplicative.Predicted mean weights per ha were obtained by tragkforming.The
fixed effect was ‘trawlgrid or no grid), and the random effects were 'days’ and ‘tow
sequencewithin a day for each modeéModels were fitted using the Ime4 package of
the'R"statistical softwaré&k(Development Core Team, 200%tBs et a).2013. The
significance of each traviypewas determined using likelihood ratio tests where the
test statistic (y?) is the difference in deviance g- d,, where d is the deviance of the full
modeland dis the deviance of the constrained modeltéB et a).2013. Catches
between trawls (ktpa®) for major species and groups were examined using equal catch
plots, where each pointpresents one contrekperimental pair, with the catch in the
control net on the xis (Fig 4).

Fish catchatlength wasanalyzedor tows using a grid by comparing the
proportion of catch at each length class using the methods of Holst and Re@)l. (200
This approach uses polynomgdneralizedinear mixed models (GLMMS) to fit curves
ofithe"expected proportions of catch length using the MASS package (Venables and
Ripley, 2002) in R. This method uses low-order polynomial approximations (cubic,
guadratic, linear, or constant) to fit the proportions at length retained in thieayvi
codend to those retained by the control and grid codends producing realigtis and
confidence intervals. A proportion of 0.5 indicates no difference in catetekn the
two.trawls at the specific lengtA proportionof 0.75 indicates that 75% of fish at a
lengthrwere caught by tlexperimentatrawl and 25% by the control trawl. The fixed
effect was 'length’, random effects were 'tow' and 'day’, and the qulbsatio was
used as an offsetlsing a binomial link function, the analysis began by fitting the cubic
polynomial followed by subsequent reductions of terms until all showed statistical
significance p < 0.05) based on Watetests, with removal of oneitm at a time to
determine the best model fit (either constant, linear, quadratic, or cubiadiional
details see HolsindRevill, 2009).
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171 Results
172

173 Thirty-two towswere completedlowing speeds were between 2.8 and 3.4 knots, and
174 fishing depths between 10.1 and 19.8 m. Mean dpgad was 40.1 SEM + 0.7)

175 and wing spread 11.0 m (SEM = 0.3)lean tow distancevas5,489 m, and meaarea

176  sweptwas 6.0 ha. For one tow, a large amourgapfpwas caught in the control codend
177 (-~ 6000 kg), and was only partially retrievédvisual estimate was made for s¢cup

178  estimates of other species weia possible.

179 Mean predicted catch ratesszfuid were reduced 47.5% by the experimental
180 trawl,which was significantly differenp(< 0.01, Table 1). According to an equal

181  cateh.plot (Fig. 4), squid catch waeatrin the control trawfor nearly allhauls, with

182  four pairs being approximately even. Sqmidntlelengths ranged between 3 and 34 cm
183  forthe“experimental tows and 4 to 33 cm for the control tows (Fid\cgprding to the
184  GEMM analysis, length was not a factor in catch differermwseen the two trawls for
185 squid that were retained in the codeRw)(5; Table 2). No squid were observed to

186  escape under the fishitige; for further details for behavior and rates of esaapser

187  thefishing linefor finfish see Bayset al.(20168h.

188 Scupwas the mst abundant bycatch species, with predicted mean catch rate
189  trend40.2% essfor the experimentdtawl, but was nostatisticallysignificant © >

190 #0:258;Table 1). The predicted mean differencelikaly a result of two large catches
191  by'the'control trawl (Fig. 4); most pairs hsichilar catchesBased on the GLMMonly

192  scupgreater thar27 cm were significantly reduced by the experimental design; a

193  quadratic curve provided the best fit (Fig. 6; Table 2). Catches abmma @/ére

194 [Fhowever, verffew compared to catches of smalletfiScupwere observed by video to
195 typically enter the trawl extermns in large groups, but large amounts of time passed
196  with no scup in the trawl extension. Sceijwamwith the trawlat the experimental

197  extensiorfor timesrangng from only a few seconds (reaching the grid and immediately

198  exiting out the escape window), to greater than 30 min at the grid, until haul back.
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199 Black sea bas&Centropristis striatq predicted mean catch rate was reduced by
200 71.6% in the experimentadawl, which was significantly differenp(= 0.001, Table 1).

201  When black sea bass were preseithe catch a majority wasaptured by the control

202 trawl for all but one pair (Fig. 4Black sea basgreater than 37 cm were significantly
203 reduced by the experimental trawl; based on the GLMM, the linear curve fit best (Fig.
204  7;Table 2)Black sea bass displayed similar behavior as scup in the trawl extension,
205 “swimming for a large range of time in ttrawl from a few seconds to more than 20

206 min:

207 Summer flounderKaralichthys dentatygpredicted mean catclate was

208 reduced (76%) significantly in the experimental trawd € 0001, Table 1), and for all
209 but.ene pair (Fig. 4All summer floundelength classes were caught less by the
210 experimental trawl; a quadratic curve was the best fit @igable 2) Summer

211 flounder typically entered the trawl texision individually, anéxitedthe trawl by

212 swimming directly up the grid and out of the escape window.

213 Smooth dogfishNlustelus canispredictedcatch ratewas reduced 86.0%y the
214 “experimental net, and was significantly differgm&(0.001, Table 1)}-or each pair, the
215 _control trawl captured more smooth dogfish. Smooth dogfish were not observed on
216  video.

217 Other species were capturafrequently and naanalyzedndividually, but

218  wereincluded in the total bycatch categoMeanpredicted catch rate footal bycatch
219  wassignificantlyreduced (69.2%y < 0.001, Table 1), and all but one pair hagteaer
220 _caitch rate by the control trawl (Fig.. Ajeanpredictedcatchrate of benthos/debris
221  trended¢ssfor the experimental trawl (33.3%), buaisnot significant p = 0.512,

222  Table 1); hauko-haul benthos/debris catch rate vimsonsistenbetween trawls (Fig.

223 4).

224
225 Discussion

226
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The results of this study demonstrate that a separatocayri@duce catches of many
commonly encounterdalycatch speciegs well agotal bycatch and benthos/debris.
Signifieantcatch rate reductions are fouiwd black sea bassummer flounder, smooth
dagfish; and total bycatch. Howevegsults forscupand benthos/debnsere equivocal
- large mean reductiongere observedbut nostatisticalsignificancewas found haul-
to=haul variation s the likely reasonvhy. The patchy distribution and vulnerability of
scuphas confounded previous attempts to reduce their bydattht(al, 2003. Both
scupand benthos/debratchesvere not consistent over the 32 tows. Additionally,
mean reduction adcupwas primarily due tatwo towswith largescupretention in the
controltrawl. Thesetwo towscanbe considered outlisy butis also consistent with how
scupare caughwithin the fishery typically by sporaditargecatches.

The large loss adquid (47.86) indicates thathe gridmay not be suitablier
commerciabpplication in thidishery. Video observation@Bayseet al, 2014) showed
thatsquideasily escapedpward through the escape window before reaching the grid.
No.length differencewere observed betweerontroland experimental trawfer squid,
implying that escape ability is not lengilependent within the length range of squid
caught.

Squidhave been observdyy escapgetting, a rapid inflation of the mantle that
powerfully forces water out of the funnel one to several times in a row (Anderson and
DeMont, 2005 Bayseet al, 2014).Escapegtting provides squidith a mechanism to
easily escape frommawl openings, such as thased inthis study. Small and juvenile
squids; which could pass through the ghidye the ability to jet escape (Hanlkomd
Messengerl996). Combineaith escape through net meshtss escape jet ability of
small sizedsquidmay be the reason that no length effect was found between the

experimental and contradawls.

A grid with horizontabarsshouldlogically reduce catches tHterallyflattened
scup Our results indicate it did not do so consister8lymeof our observations from
collected video suggest thetuppassage can occur at hlalck wherscupwere
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observed to turn laterally and pass through grid openiuditionally, ourvideo
suggestshatscupwere disinclined to move upward toward the escape opening when
faced with an obstacle. In prior researBbl(et al, 2002, lateral escape openings were
very effective (up to 100%ht eliminatingscuplarger than 10 crfrom asquidtrawl,
but.net smakr-sized scupoptimal grid design and escape opening placement remains
to be determinetbr scup

Large scu@mndblack sea bag27 cm and 3¢mand greatemespectively
catches wersignificantly reduced by thexperimental trawlLargerfinfishesare likely
excluded due to the small grid spacings (which they could not fit through)
Additionally, larger fish can swim for longg@eriodsof time (He andWardle 1988).
Largerscupandblack sea bassould likely swim in front of the grid longer than smaller
fishsproviding more opportunities to use #srapavindow.

In contrast tescup the exclusion of summer floundees unexpected based on
theirdorso-ventrally flattened body typehe rorizontal spacingsf the gridare
designed to inhibiaterally-compresseéinfish entrance, but not dorseentrallyflatter
fish.body shapedNeverthelessall summer floundesize classewere significantly
reducedn theexperimental geaSummerflounderwereobserved on videtm swim
directly up the grid and out of the escape window. This finding contributes to other
studies that have found flatfish using the water column, and not remaining on the
bottom,(e.g. Bublitz, 1996; CadrandWestwood, 2004). Further research on this topic
is‘needed.

Smooth dogfisttatchwas significantly redaed in the experimental trawl.
Although smooth dogfishrenot currently a major bycatch issue, tlasult could
ultimately bea positive outcomdor this fishery as this species has tpetential to
become a nuisance in trawl fisher{eawson et al.2007).This exclusion by a grid
with horizontalbarsin the small mesbkquidtrawl fisheryechoedobserved reductions
of the morphologically similaspiny dogfish $qualus acanthigsa nuisance bycatch

speciesn the small meskilver hake fisheryn the same regiofChosid et al., 2012).

This article is protected by copyright. All rights reserved



284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301
302
303

304

305

306
307
308
309
310
311
312

The large reductions isquidcatch(reported in this paper) subsequently
prompted modifications to the nettings surrounding the gnimb{fications tested after
tests reported in this paper, amat reportedvithin this papej. These laer tests
included: reducing thescape windowize,modifying the funneinto anescape ramp
andincreasinghe distance between the terminal end of the rangpthe grid. None of
these modifications effectively separated fish fregmid. Video depictethrgefish
congregationable toexit through the escape window, holding station just forward of

the grid,where they remainedntil haul backultimatelybeing captured.

Separating squittom fish in the extension of a tram¢mainschallengingor
the New England squiishery. Bayseet al.(2014) documented squidactions to the
grid.-and found thasquidcould perceive and react quickly to both a grid andsaape
windoew, whichexplains thdargesquidescapeates whereby this study determined
that thissquidloss was too great for a commercial fish@gelack of motivation by
scupto escapdérom smaller escape windows suggesitehavioraldifference that could
be exploited to reduce bycatch. Further investigation of the belaf\doupmay yield
useful results. Decreasing the size of the escape window and altering the funnel (as
compared terior research) improvesquidretention but little separation was observed
forbyeatch or debris. Future woakmingto separatsquidand fishesn the extension
need to concentrate on limiting the squscape jet mechanism,tygtill provide fish
with proper motivation to exit the trawl.
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Table 1. Mean predicted weight (kg) per ha trawled from linear mixed models, percent

predicted catch rate change between experimental trawl with grid and control trawl designs,

and likelihood ratio statistics (x2), and p-value for squid and major bycatch species . * denotes

statistical significance at a of 0.05.

Mean (kg ha™)

2

Speties % Change X p-value

Longfin‘inshore squid Control 14.1 -47.5 22.877 <0.001*
Experimental 7.4

Scup Control 2.8 -40.2 1.282 0.258
Experimental 1.7

Summer flounder Control 1.4 -76.3 30.866 <0.001*
Experimental 0.3

Black sea bass Control 1.2 -71.6 11.649 0.001*
Experimental 0.3

Smoothsdoegfish Control 14 -86.0 27.331 <0.001*
Experimental 0.2

Total bycatch Control 8.9 -69.2 21.769 <0.001*
Experimental 2.7

Benthos/debris Control 1.4 -33.3 0.431 0.512
Experimental 0.9

Table 2. Generalized linear mixed model parameters for squid, scup, summer flounder, and

black sea bass, where model and parameter is the chosen model [either constant (Bo), linear

(B1),.quadratic (B,), or cubic (B3)], estimate is the value of the slope or intercept, SE = standard

erromofithe estimate; df = degrees of freedom.

Treatment Model Parameter Estimate  SE df t-value p-value

Longfin inshore squid Quadratic B, 0.002 0.001 341 1985 0.048
B1 -0.099 0.037 341 -2.670 0.008
Bo 1.241 0.888 341 1.398 0.163

Scup Quadratic B, -4.474 2.271 150 -1.970 0.050
B1 0.464 0.219 150 2.117 0.036
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Author Manuscript

Bo
Summer flounder Quadratic B,
Bs
Bo

sea bass Linear B1

Bo

-0.012

-14.117

0.670
-0.009
6.104
-0.216

0.005
6.131
0.307
0.004
1.709
0.041

150
105
105
105
94
94

-2.330
-2.303
2.179
-2.253
3.571
-5.260

0.021
0.023
0.032
0.026
<0.001
<0.001
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